Wer gerne mit Kohte und Jurte konstruiert und sich dazu gerne Pläne macht, der kommt um ein gewisses Maß an Mathematik nicht herum. Idealisiert sind Kohte und Jurte regelmäßige Vielecke. Das modulare System lässt zu, unterschiedliche Planen fast beliebig zu kombinieren. Daraus ergeben sich vielfältige geometrische Formen. Für die Bedeutung der Abkürzungen und Werte siehe: Wichtige Maße.
Die Kohte entspricht einem gleichseitigem Achteck.
Inkreisradius
Umkreisradius
Große Diagonale
Mittlere Diagonale
Kleine Diagonale
Zentriwinkel
Innenwinkel
Flächeninhalt
Zwölfeck
Zentriwinkel
Innenwinkel
Flächeninhalt
Die Fläche kann auch mit als dem Radius des Umkreises[1] berechnet werden
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A = 6 \sin\left(\frac{\pi}{6}\right) R^2 = 3 R^2.}
Mit r als Radius des Inkreises, ergibt sich der Flächeninhalt des regelmäßigen Zwölfecks zu