Formelsammlung: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
Zeile 1: Zeile 1:
== Achteck ==
== Achteck ==


Inkreisradius  
=== Inkreisradius ===


<math> r_i = a  \ \frac{1}{2} (1+ \sqrt{2})  </math>
<math> r_i = a  \ \frac{1}{2} (1+ \sqrt{2})  </math>
Zeile 7: Zeile 7:
<math> a = 2 r_i \ (\sqrt{2}-1) </math>
<math> a = 2 r_i \ (\sqrt{2}-1) </math>


Umkreisradius  
=== Umkreisradius ===


<math> r_u = a  \ \frac{1}{2} \sqrt{4 + 2\sqrt{2}} </math>
<math> r_u = a  \ \frac{1}{2} \sqrt{4 + 2\sqrt{2}} </math>
Zeile 14: Zeile 14:


<math> a = r_u \  \sqrt{2 - \sqrt{2}} </math>
<math> a = r_u \  \sqrt{2 - \sqrt{2}} </math>
=== Große Diagonale ===
<math> d_1 = a  \ \sqrt{4 + 2\sqrt{2}} \ = \ 2 r_u </math>
=== Mittlere Diagonale ===
<math> d_2 = a  \ (1 + \sqrt{2}) \ = \ 2 r_i</math>
=== Kleine Diagonale ===
<math> d_3 = a  \ \sqrt{2 + \sqrt{2}} \ = \ r_u \, \sqrt{2} </math>
=== Zentriwinkel ===
<math> \alpha = \frac{360^\circ}{8} = 45^\circ </math>
=== Innenwinkel ===
|<math> \delta = 180^\circ - \alpha = 135^\circ </math>
<math> \cos \delta = \frac{-1}{\sqrt{2}} </math>
=== Flächeninhalt ===
<math> A = a^2  \ (2+ 2 \sqrt{2})</math>
<math> A = r_u^2  \ 2 \sqrt{2}</math>
19.711

Bearbeitungen

Navigationsmenü