Außendreibein: Unterschied zwischen den Versionen
Ralph (Diskussion | Beiträge) |
Ralph (Diskussion | Beiträge) |
||
Zeile 25: | Zeile 25: | ||
Für <math>s_u</math> gilt <math>s_u = \sqrt{(R_u-R)^2 + h_u^2}</math>. Weiter gilt die Annahme <math>\varphi = 45^\circ</math>. Daraus folgt: <math>R_u = R + h_u</math> und <math>s_u = \sqrt{2} h_u^2</math> | Für <math>s_u</math> gilt <math>s_u = \sqrt{(R_u-R)^2 + h_u^2}</math>. Weiter gilt die Annahme <math>\varphi = 45^\circ</math>. Daraus folgt: <math>R_u = R + h_u</math> und <math>s_u = \sqrt{2} h_u^2</math> | ||
Bei einer Jurte mit 6 Meter Durchmesser und 160 cm Seitenhöhe ist die benötigte Länge <math>s = s_o + s_u = \sqrt{{2}} R + \sqrt{2} h_u^2 = \sqrt{{2}} 300 cm + \sqrt{2} 160 cm = 425 + 226 cm = 651 cm </math> | Bei einer Jurte mit 6 Meter Durchmesser und 160 cm Seitenhöhe ist die benötigte Länge <math>s = s_o + s_u = \sqrt{{2}} R + \sqrt{2} h_u^2 = \sqrt{{2}}*300 cm + \sqrt{2} 160 cm = 425 + 226 cm = 651 cm </math> | ||
== Formeln für einen Kegel == | == Formeln für einen Kegel == |
Version vom 9. März 2017, 15:08 Uhr
Um eine Jurte im Inneren völlig frei von Stangen zu halten, ist ein Außendreibein eine praktikable Lösung, sofern längeres Stangenholz zu Verfügung steht.
Welche Stangenlänge benötigt es hierfür?
Annahme: Aufstellwinkel der Stangen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \varphi = 45^\circ}
In unserer Vorstellung zerlegen wir die benötigte Stangenlänge in einen Teil über der Traufkante einer Jurte und in den Teil unter der Traufkante der Jurte. So betrachten wir einmal einen gedachten Kegel und einmal einen Kegelstumpf.
In den Formeln heißen diese Strecken für die Stangenlängen Mantellinie. Weitere Formeln findest du in unserer Formelsammlung.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s_o} entspricht der oberen Länge
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s_u} entspricht der unteren Länge
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R} entspricht dem Durchmesser der Jurte
Für die Höhe des oberen Kegels lautet die Formel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_o = \sqrt{s_o^{2}-R^{2}}} . Stellen wir diese Formel um nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s_o} , so erhalten wir Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s_o = \sqrt{h^{2}+r^{2}}} .
Nehmen wir nun einen optimalen Winkel mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \varphi = 45^\circ} an, so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_o = R} . Aus unserer Formel wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s_o = \sqrt{{2}} R}
Nun brauchen wir noch den unteren Teil.
Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s_u} gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s_u = \sqrt{(R_u-R)^2 + h_u^2}} . Weiter gilt die Annahme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \varphi = 45^\circ} . Daraus folgt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R_u = R + h_u} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s_u = \sqrt{2} h_u^2}
Bei einer Jurte mit 6 Meter Durchmesser und 160 cm Seitenhöhe ist die benötigte Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s = s_o + s_u = \sqrt{{2}} R + \sqrt{2} h_u^2 = \sqrt{{2}}*300 cm + \sqrt{2} 160 cm = 425 + 226 cm = 651 cm }
Formeln für einen Kegel
gerader Kreiskegel
Radius
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r = \sqrt{s^{2}-h^{2}}}
Höhe
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h = \sqrt{s^{2}-r^{2}}}
Mantellinie
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s = \sqrt{h^{2}+r^{2}}}
Winkel
eines geraden Kreiskegels ist der halbe Öffnungswinkel, auch halber Kegelwinkel genannt
Anwendung der trigonometrischen Funktionen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sin\varphi = \frac{\text{Gegenkathete von }\varphi}{\text{Hypotenuse}} = \frac{r}{s}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tan\varphi = \frac{\text{Gegenkathete von }\varphi}{\text{Ankathete von }\varphi} = \frac{r}{h}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \varphi = \arcsin\frac{r}{s} = \arctan\frac{r}{h}}
Durchmesser der Grundfläche
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle d = 2 \cdot r = 2 \cdot h \cdot \tan\varphi}
Grundfläche
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A_G = r^2\cdot \pi }
Flächeninhalt der Mantelfläche
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A_M = r\cdot s\cdot \pi}
Oberfläche
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A_O = A_G + A_M = r\cdot\pi\cdot (r + s)}
Volumen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V = \frac{1}{3}\cdot \pi\cdot r^{2}\cdot h = \frac{1}{3}\cdot A_G \cdot h}
Kegelstumpf
Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r} werde der Radius der Deckfläche, mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R} der Radius der Grundfläche bezeichnet. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \varphi} sei der Winkel zwischen einer Mantellinie und der Kegelachse.
Volumen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V = \frac{h \cdot \pi}{3} \cdot (R^2 + R \cdot r + r^2)}
Länge einer Mantellinie
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle m = \sqrt{(R-r)^2 + h^2}}
Mantelfläche
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M = (R+r) \cdot \pi \cdot m}
Deckfläche
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle D = \pi \cdot r^2}
Grundfläche
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G = \pi \cdot R^2}
Oberfläche
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle O = \pi \cdot \left[ r^2 + R^2 + m \cdot (r + R) \right]}
Höhe des Kegelstumpfs
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h=\frac{R-r}{\tan\varphi}}